
Advanced Crash Course in Supercomputing:
Supercomputers and Batch Scripts

Rebecca Hartman-Baker
Oak Ridge National Laboratory

hartmanbakrj@ornl.gov

© 2004-2011 Rebecca Hartman-Baker. Reproduction permitted for
 non-commercial, educational use only.

2

Outline

I.  Supercomputers
II.  Batch Scripts
III.  Using Smoky

3

I. SUPERCOMPUTERS
Mare Nostrum, installed in Chapel Torre Girona, Barcelona Supercomputing Center. By courtesy of
Barcelona Supercomputing Center -- http://www.bsc.es/

4

I. Supercomputers

• Computer Architecture 101
• OLCF Machines
• Cray XT4/5 Architecture

5

Computer Architecture 101

Source: http://en.wikipedia.org/wiki/Image:Computer_abstraction_layers.svg (author unknown)

6

Computer Architecture 101

• Processors
• Memory

–  Memory Hierarchy
–  TLB

•  Interconnects
• Glossary

7

Computer Architecture 101:
Processors

• CPU performs 4 basic
operations:
–  Fetch
–  Decode
–  Execute
–  Writeback

Source: http://en.wikipedia.org/wiki/Image:CPU_block_diagram.svg

8

CPU Operations

•  Fetch
–  Retrieve instruction from program memory
–  Location in memory tracked by program counter (PC)
–  Instruction retrieval sped up by caching and pipelining

•  Decode
–  Interpret instruction by breaking into meaningful parts, e.g., opcode,

operands

•  Execute
–  Connect to portions of CPU to perform operation, e.g., connect to

arithmetic logic unit (ALU) to perform addition
• Writeback

–  Write result of execution to memory

9

Computer Architecture 101: Memory

• Hierarchy of memory
–  Fast-access memory: small (expensive)
–  Slower-access memory: large (less expensive)

• Cache: fast-access memory where frequently used data
stored
–  Reduces average access time
–  Works because typically, applications have locality of reference
–  Cache in XT4/5 also hierarchical

•  TLB: Translation lookaside buffer
–  Used by memory management hardware to improve speed of

virtual address translation

10

Cache Associativity

• Where to look in cache memory for copy of main memory
location?
–  Direct-Mapped/ 1-way Associative: only one location in cache for

each main memory location
–  Fully Associative: can be stored anywhere in cache
–  2-way Associative: two possible locations in cache
–  N-way Associative: N possible locations in cache

• Doubling associativity (1 2, 2 4) has same effect on
hit rate as doubling cache size

•  Increasing beyond 4 does not substantially improve hit rate;
higher associativity done for other reasons

11

Cache Associativity: Illustration

12

Computer Architecture 101:
Interconnects

• Connect nodes of machine
to one another

• Methods of interconnecting
–  Fiber + switches and routers
–  Directly connecting

•  Topology
–  Torus
–  Hypercube
–  Butterfly
–  Tree

13

Computer Architecture 101: Glossary

• SSE (Streaming SIMD Extensions): instruction set extension
to x86 architecture, allowing CPU to work on multiple
instructions in single clock cycle

• DDR2 (Double Data Rate 2): synchronous dynamic random
access memory, operates twice as fast as DDR1
–  DDR2-xyz: performs xyz million data transfers/second

• Dcache: cache devoted to data storage
•  Icache: cache devoted to instruction storage
• STREAM: data flow

14

OLCF Facts and Figures

Jaguarpf  Kraken  Gaea 

Compute Nodes  18,772  9408  2576 

Processor  2.3 GHz AMD 
Opteron Dual 
Hex‐Core 

2.3 GHz AMD 
Opteron Dual 
Hex‐Core 

2.1 GHz AMD 
“Magny‐Cours” 12‐
core 

Memory  16 GB/node 
DDR2‐800 

16 GB/node 
DDR2‐800 

64 GB/node DDR3 

Network  Cray SeaStar 2, 
3‐D Torus 

Cray SeaStar 2, 
3‐D Torus 

Cray Gemini, 3‐D 
Torus 

Peak  2.3 PF  1.17 PF  260 TF 

15

XT4/5 Architecture

• Hardware
–  Processors
–  Memory

•  Memory Hierarchy
•  TLB

–  System architecture
–  Interconnects

• Software
–  Operating System Integration
–  CNL vs Linux

16

Quad-Core Architecture

17

18

Quad Core Cache Hierarchy

19

L1 Cache

• Dedicated
•  2-way associativity
•  8 banks
•  2 x 128-bit loads/cycle

20

L2 Cache

• Dedicated
•  16-way associativity

21

L3 Cache

• Shared
• Sharing-aware replacement

policy
…

22

Cray XT4 Architecture

•  XT4 is 4th generation Cray MPP
•  Service nodes run full Linux
•  Compute nodes run Compute Node

 Linux (CNL)

23

Cray XT4 Architecture

•  2- or 4-way SMP
•  > 35 Gflops/node
•  Up to 8 GB/node
•  OpenMP Support
 within Socket

24

Cray SeaStar2 Architecture
•  Router connects to 6

neighbors in 3-D torus
–  Peak bidirectional BW 7.6

GB/s; sustained 6 GB/s
–  Reliable link protocol with

error correction and
retransmission

•  Communications Engine:
DMA Engine + PPC 440
–  Together, perform messaging

tasks so AMD processor can
focus on computing

•  DMA Engine and OS
together minimize latency
with path directly from app
to communication hardware
(without traps and
interrupts)

HyperTransport
Interface

Memory

PowerPC
440 Processor

DMA
Engine 6-Port

Router

Blade
Control

Processor
Interface

25

Cray XT5 Architecture

•  8-way SMP
•  > 70 Gflops/node
•  Up to 32 GB shared
 memory/node
•  OpenMP support

26

Software Architecture

•  CLE microkernel on
compute nodes

•  Full-featured Linux on
service nodes

•  Software architecture
eliminates jitter and
enables reproducible
runtimes

•  Even large machines
can reboot in < 30 mins,
including filesystem

27

Software Architecture

• Compute PE (processing element): used for computation
only; users cannot directly access compute nodes

• Service PEs: run full Linux
–  Login: users access these nodes to develop code and submit jobs,

function like normal Linux box
–  Network: provide high-speed connectivity with other systems
–  System: run global system services such as system database
–  I/O: provide connectivity to GPFS (global parallel file system)

28

CLE vs Linux

• CLE (Cray Linux Environment) contains subset of Linux
features

• Minimizes system overhead because little between
application and bare hardware

29

Resources: Computer Architecture
101

• Wikipedia articles on computer architecture:
http://en.wikipedia.org/wiki/Computer_architecture ,
http://en.wikipedia.org/wiki/CPU ,
http://en.wikipedia.org/wiki/CPU_cache ,
http://en.wikipedia.org/wiki/DDR2_SDRAM ,
http://en.wikipedia.org/wiki/Microarchitecture ,
http://en.wikipedia.org/wiki/SSE2 ,
http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

• Heath, Michael T. (2010) Notes for CS 554, Parallel
Numerical Algorithms,
http://www.cse.illinois.edu/courses/cs554/notes/index.html

30

Resources: Cray XT4 Architecture

•  Local machines
–  Jaguar: http://www.nccs.gov/computing-resources/jaguar/
–  Eugene: http://www.nccs.gov/computing-resources/eugene/
–  Jaguarpf: http://www.nccs.gov/jaguar/

•  AMD architecture
–  Waldecker, Brian (2008) Quad Core AMD Opteron Processor

Overview, available at
http://www.nccs.gov/wp-content/uploads/2008/04/
amd_craywkshp_apr2008.pdf

–  Larkin, Jeff (2008) Optimizations for the AMD Core, available at
http://www.nccs.gov/wp-content/uploads/2008/04/optimization1.pdf

•  XT4 Architecture
–  Hartman-Baker, Rebecca (2008) XT4 Architecture and Software,

available at
http://www.nccs.gov/wp-content/training/2008_users_meeting/4-17-08/
using-xt44-17-08.pdf

31

II. BATCH SCRIPTS
Soft Batch Cookies. From
http://www.kelloggconvenience.com/Resources/Soft_Batch-Home-PBpouch.jpg

32

II. Batch Scripts

• Batch system and Scheduling
• Concepts
• Useful commands
•  Further help

33

Batch System and Scheduling

• Supercomputer: powerful computer consisting of many
interlinked CPUs

• Users competing for computational resources
• How to launch and schedule jobs fairly?
•  Job can run without user presence
• Must not allow one user to hog resources

34

Batch System

• Batch system accepts input jobs into queue and launches
them when resources available

• Many machines use batch system PBS (Portable Batch
System)

• PBS developed for NASA in 1990s

35

Scheduler

• Scheduler decides when jobs can be run based on
scheduling policies, e.g. user priority, length of job, number
of nodes requested, length of time in queue

• Many machines use Maui
 Scheduler

• Maui Scheduler extensively
 developed, supported by

 large segment of computation
 community including
 U.S. Dept. of Energy, NCSA

(source: www.the-hawaii-vacation-guide.com)

36

Concepts

•  Limits for walltime and number of processors, so if request
exceeds limits, job automatically rejected

• Scheduler rules complicated, but generally, “smaller” jobs
run first

• Size of job is function of number of processors and
estimated time

• You provide info about number of processors you want and
estimate of time job will run

37

Concepts

• Strategies:
– Like inverse of “The Price Is Right,” give lowest estimate

possible, without going under true time needed (always
good strategy)

– Use fewer processors if possible (not always good
strategy)

•  If you reach end of estimated time, PBS will
terminate your job!

• Write script that tells PBS what to do when job is
launched

38

Concepts
•  Shell Script format:

–  First, a line invoking the scripting language:
#!/bin/csh

–  Next, embedded PBS commands, e.g.
#PBS -l walltime=00:10:00,nodes=2:ppn=2
#PBS -q workq
 (the shell script interprets these as comments, but PBS
understands they are PBS commands)

–  Then, environment variable initialization, e.g.
setenv MYMAINDIR /home/hqi/hello (sets variable
MYMAINDIR to /home/hqi/hello)
setenv PROG $MYMAINDIR/prog (sets PROG to /
home/hqi/hello/prog)

39

Concepts

• Shell script format (continued):
–  Then, shell script and regular Linux commands, e.g.
if (-e $OUTF) mv $OUTF $OUTF.old
 (meaning that if file called $OUTF exists, rename it to
$OUTF.old)

–  Finally, run job:
mpirun -np $NP $PROG < $INFILE > $OUTF

•  To launch job:
–  Make script executable*: chmod u+x myscript
–  qsub myscript

*Not necessary on some systems

40

Useful Commands (PBS)

•  #PBS -l walltime=hh:mm:ss,nodes=n:ppn=p
This tells PBS how much walltime you request (where
hh:mm:ss replaced by appropriate number of hours, minutes,
and seconds), how many dual processor nodes you want (replace
n with appropriate number), and how many processors per node
(1, 2, 3, or 4)

•  #PBS -q workq Which queue to use (in this case, queue
called workq)

•  #PBS -V Export all environment variables to batch job (good
practice to do this)

•  #PBS -m be Sends you e-mail at beginning and end of job

41

Useful Commands (Shell Scripting)

• set echo Print out commands as they are executed
(useful for debugging script)

• setenv A B or export A=B Sets environment
variable A to B

• $A value of A
• mpirun -np $NP $PROG < $INPUT >
$OUTPUT mpirun (sometimes mpiexec, or on
proprietary systems, aprun, poe, etc.) is executable that
launches parallel jobs on multiple processors; -np is flag
indicating number of processors used in run
*NOTE: some implementations do not require input redirection (<)

42

Further Help

• NCSA Cobalt Documentation: Running Jobs
http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/
SGIAltix/Doc/Jobs.html

•  The C Shell tutorial
http://www.eng.hawaii.edu/Tutor/csh.html

• DuBois, Paul. Using csh & tcsh, O’Reilly & Associates,
1995.

• Newham, Cameron and Bill Rosenblatt. Learning the bash
Shell, O’Reilly & Associates, 1998.

43

Bibliography/Resources

• About OpenPBS http://www.openpbs.org/about.html
• Maui Scheduler http://www.supercluster.org/maui/

44

III. USING SMOKY
Sunset from Clingmans Dome, Great Smoky Mountains National Park, photo available at
http://www.nps.gov/grsm/photosmultimedia/index.htm

45

III. Using Smoky

• About Smoky
•  Logging In
• Compiling
• Software Environment
• Running Jobs

46

About Smoky

• Development cluster, comparable to larger NCCS machines
• Used for application development
•  80 node Linux cluster
• Each node consists of four quad-core 2.0 GHz AMD

Opteron processors, with 32 GB memory (2GB/core)
• Gigabit ethernet network with infiniband interconnect

47

Logging in to Smoky

• Use ssh to connect
ssh username@smoky.ccs.ornl.gov

• Authentication using one-time passwords from RSA SecurID
key fob

• X11 Tunneling: use -X (or on a Mac, -Y) option with ssh

48

Compiling on Smoky

•  Three compiler suites available on smoky:
–  PGI (default)
–  Pathscale
–  GCC

• MPI compilers (wrappers to compiler independent of
programming environment)
–  mpicc (C compiler)
–  mpiCC (C++ compiler)
–  mpif77 (Fortran 77 compiler)
–  mpif90 (Fortran 90 compiler)

49

Software Environment on Smoky

• Suppose I need to use GNU C++ compiler to compile my
code

• Suppose I also want to link with the PETSc library
• On most systems, would need to change paths in makefiles

each time I port to new system
• Would need to make sure to point to GNU compiler and

proper build of PETSc
• What happens if I discover that I need a different compiler?

Go back and change everything again

50

Software Environment on Smoky

• Modules allow dynamic modification of user environment
with modulefiles

• Can switch from PGI to GNU and back again with simple
command

• Can load proper version of PETSc automatically, based on
compiler loaded

51

Software Environment on Smoky:
Modules

• Software is loaded or swapped using modules
• Allows software, libraries, paths, etc. to be cleanly entered

into and removed from your programming environment
• Conflicts are detected and loads that would cause conflicts

are not allowed

52

Software Environment on Smoky:
Modules

Command  Defini=on  Example 

module load
my_module

Loads module my_module module load petsc

module swap
first_module
second_module

Replaces first_module
with second_module

module swap PE-pgi
PE-gnu

module help Lists available commands and 
usage 

module list Lists all modules currently 
loaded 

module avail
[name]

Lists all modules [beginning 
with name] 

module avail gcc

53

Running Jobs on Smoky

•  Login node: node you log in to
–  Edit files
–  Code compilation
–  Data backup
–  Job submission

• Compute nodes
–  Where jobs run
–  Access managed by PBS
–  Scheduling by Moab

54

Nice Job Script for Smoky 

#PBS -V
#PBS -j oe
#PBS -A STF006
#PBS -N loadbal
#PBS -l walltime=00:10:00,nodes=1:ppn=16
export CURRDIR=“/ccs/home/hqi/hello”
export SCRDIR=“/tmp/work/hqi”
export EXEC=“hello”
export INPUT_FILE=“hello_input”
cp $CURRDIR/$EXEC $SCRDIR
cp $CURRDIR/$INPUT_FILE $SCRDIR
cd $SCRDIR
date
mpirun -n 16 ./$EXEC < $INPUT_FILE
date

55

Resources/Bibliography

• Smoky webpage
http://www.nccs.gov/computing-resources/smoky/

• NCCS Modules webpage
http://www.nccs.gov/user-support/general-support/modules/

